ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
H. D. Warren, M. F. Sulcoski
Nuclear Science and Engineering | Volume 86 | Number 1 | January 1984 | Pages 1-9
Technical Paper | doi.org/10.13182/NSE84-A17965
Articles are hosted by Taylor and Francis Online.
An assembly of self-powered in-core neutron detectors has been tested for 6 yr over four fuel cycles in the Oconee 2 pressurized water reactor. The assembly contained both prompt-responding ytterbium and delayed-responding rhodium detectors. Two ytterbium detectors were paired with two rhodium detectors in the assembly. The experiment was conducted to define the long-term performance characteristics of the ytterbium detectors. The results show that the radiation sensitivity of the ytterbium detector, after an initial decrease of 15 to 20%, regenerates with exposure, becoming more sensitive than at the beginning.