ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
S. N. Cramer
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 398-416
Technical Paper | doi.org/10.13182/NSE96-A17919
Articles are hosted by Taylor and Francis Online.
Methods for coupling multiple forward and adjoint radiation transport Monte Carlo calculations with no statistical error propagation are presented. Correlated forward and adjoint particle histories are uniformly initialized on arbitrarily placed intermediate source boundaries throughout the calculational system. In applying the method to multilegged duct streaming problems, these source boundaries are placed at the duct leg intersections. The necessary forward and adjoint fluxes for the coupling procedure are each computed from an opposite-mode calculation. The no-error-propagation feature is the result of an exact correlation of all phase-space variables for coupled forward-adjoint particle histories at each boundary. For ducts of more than two legs, next-event estimation between forward and adjoint collision sites across arbitrarily placed intermediate scoring boundaries is necessary to achieve the variable correlation. Comparison of calculational results between the coupled and standard methods for two- and three-legged ducts are presented.