ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
C. Y. Wang, W. R. Zeuch
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 170-177
Technical Paper | doi.org/10.13182/NSE86-A17878
Articles are hosted by Taylor and Francis Online.
An advanced multidimensional method for structural and hydrodynamic analysis of piping systems of liquid-metal fast breeder reactors under various accident loads is described. The method couples a two-dimensional finite difference hydrodynamic technique with a three-dimensional finite element structural dynamics program. In the analysis, an elbow hydrodynamic model has been developed to account for the effect of global elbow motion. Treatment is provided for calculating fluid motion in the vicinity of the isolated flow region, rigid obstacle, and baffle plates, which commonly occurs in the in-line components. Also, an implicit time-integration scheme has been developed for structural analysis under long-duration accident loads. Three sample problems are given, dealing with analyses of (a) multidimensional fluid-structure interaction, (b) hydrodynamics in the in-line components, and (c) seismic response of a pipe-elbow loop.