ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
H. Makowitz
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 136-143
Technical Paper | doi.org/10.13182/NSE86-A17874
Articles are hosted by Taylor and Francis Online.
Numerical experiments performed on a single instruction multiple data-pipeline vector parallel (SIMD-PVP) architecture computing machine, e.g., a CRAY X-MP/48, demonstrate that current nuclear reactor systems codes can be restructured for concurrent multiprocessing and show wall clock performance improvements of 1.5 to 3.0 on a 4-CPU machine, depending on plant model, problem type, and problem length. In addition, algorithm development studies indicate that up to a 20% speedup can be obtained by a new class of parallel numerical methods. Faster-than-real-time simulation has been demonstrated utilizing RELAP5/MOD1 and a pressurized water reactor plant model characteristic of licensing and/or safety analysis calculations. A theoretical analysis indicates that five to ten times faster than real-time computation may be possible for this class of problems utilizing this or the next generation of SIMD-PVP architecture machines, such as the CRAY X-MP/48, and new computer codes optimized for such machines.