ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
S. Woolf, W. L. Filippone, B. D. Ganapol, J. C. Garth
Nuclear Science and Engineering | Volume 92 | Number 1 | January 1986 | Pages 110-118
Technical Paper | doi.org/10.13182/NSE86-A17871
Articles are hosted by Taylor and Francis Online.
Two discrete ordinates methods, the Sn and streaming ray methods, are applied to electron transport problems. Calculational results in the form of energy deposition profiles are compared with those obtained by the method of moments for the case of a 200-keV plane perpendicular source embedded in infinite aluminum. In a second set of calculations, Sn and streaming ray flux data are compared with results of a recently developed analytical benchmark technique applied to the solution of the energy-independent form of the Spencer-Lewis equation for electron transport. Satisfactory agreement with moments and analytical benchmark calculations is found. Areas of divergence among the various calculational methods are examined.