ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Timo Toivanen
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 275-284
Technical Paper | doi.org/10.13182/NSE66-A17835
Articles are hosted by Taylor and Francis Online.
By the technique of splitting the total directional flux into even and odd portions in angle, the stationary monoenergetic Boltzmann equation with arbitrary collision kernel and with arbitrary external directional source of a general geometry is symmetrized to a self-adjoint form. The continuity and boundary conditions for the resulting self-adjoint integro-differential equation are explicitly constructed. A variational principle is then set up by devising a self-adjoint Lagrangian whose minimum property is equivalent to the symmetrized Boltzmann equation with the associated continuity and boundary conditions. The developed variational principle contains no arbitrariness and is used for deriving unique variational boundary conditions for the P1 approximation of the spherical harmonics method. It is shown, for a general geometry, that applying the semidirect variational method with an angle-independent trial function yields, without any physical reasoning, the correct P1 differential equation and the corresponding no-return-current boundary condition.