ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Timo Toivanen
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 275-284
Technical Paper | doi.org/10.13182/NSE66-A17835
Articles are hosted by Taylor and Francis Online.
By the technique of splitting the total directional flux into even and odd portions in angle, the stationary monoenergetic Boltzmann equation with arbitrary collision kernel and with arbitrary external directional source of a general geometry is symmetrized to a self-adjoint form. The continuity and boundary conditions for the resulting self-adjoint integro-differential equation are explicitly constructed. A variational principle is then set up by devising a self-adjoint Lagrangian whose minimum property is equivalent to the symmetrized Boltzmann equation with the associated continuity and boundary conditions. The developed variational principle contains no arbitrariness and is used for deriving unique variational boundary conditions for the P1 approximation of the spherical harmonics method. It is shown, for a general geometry, that applying the semidirect variational method with an angle-independent trial function yields, without any physical reasoning, the correct P1 differential equation and the corresponding no-return-current boundary condition.