ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
J. D. Stewart
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 266-274
Technical Paper | doi.org/10.13182/NSE66-A17834
Articles are hosted by Taylor and Francis Online.
Two equally valid systems of definitions are given for the neutron diffusion parameters of a reactor lattice: cell-average and cell-surface. In defining the cell-average parameters, we imagine a macroscopic flux distribution to be fixed in space while the lattice is translated with respect to it. In defining the cell-surface parameters, we work in terms of fluxes and currents on the surface of a cell having the fissile material at its center. Parameters from both systems have been used before; but until recently we have lacked complete clarity of definition and the realization that there are two valid systems of parameters that should not be mixed in the one calculation. The early formula, L2 is equal to the summation over all values of i of fiLi2, is for a cell-average thermal diffusion area; L2 = (outleakage)/B2 (absorption), applied to a cell with the fissile material at the center, is a cell-surface diffusion area and is less than the summation over all values of i of fiLi2 by ≈(lattice spacing)2/24.