ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
H. Shaked, D. R. Olander, and T. H. Pigford
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 122-130
Technical Paper | doi.org/10.13182/NSE67-A17814
Articles are hosted by Taylor and Francis Online.
The lattice diffusion coefficient of 133Xe in cast uranium monocarbide was measured by postirradiation anneal experiments in the temperature range 1000 to 2000°C. The experimental results were analyzed by a small-time solution of Fick's law in which the effect of depletion of the surface layer due to recoil was incorporated in the initial distribution. The diffusion coefficient of specimens consisting of large grains (700 to 1000μ) was best approximated by in the range 1000 to 2000'C. Specimens with small grains (20 to 150μ) exhibited the same diffusion coefficient as the large grain samples above 1500°C. Below 1500°C, diffusivities in small-grained specimens varied widely, indicating dependence on grain size and, hence, the existence of appreciable grain-boundary diffusion.