ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
H. Giese, S. Pilate, J. M. Stevenson
Nuclear Science and Engineering | Volume 87 | Number 3 | July 1984 | Pages 262-282
Technical Paper | doi.org/10.13182/NSE84-A17782
Articles are hosted by Taylor and Francis Online.
Measurements of the worths of simulated control rods for fast power reactors have been made in the ZEBRA and SNEAK critical assemblies by the modified source multiplication method (MSMM). The assemblies used were the conventional and unconventional core arrangements from the BIZET program and a compacted version of a conventional core. The control rods were mainly natural B4C, with some study of 40% 10B-enriched B4C and of Eu2O3. Correction factors for the MSMM were obtained from eigenvalue and source-mode diffusion theory calculations in XY geometry. The measured rod worths and interactions are compared with calculated values from methods and data similar to those used by the different participants in the BIZET program to predict the corresponding parameters in fast power reactors. In general, acceptable agreement is found.