ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
J. Hirota, M. Nakano, S. Iijima, K. Shirakata
Nuclear Science and Engineering | Volume 87 | Number 3 | July 1984 | Pages 252-261
Technical Paper | doi.org/10.13182/NSE84-A17781
Articles are hosted by Taylor and Francis Online.
An experimental study of the heterogeneous liquid-metal fast breeder reactor core has been made using FCA VII-3 assemblies of an axially heterogeneous configuration. The internal blankets inserted in these assemblies differed in composition, arrangement, and thickness. The analysis was carried out using the Japan Atomic Energy Research Institute Fast Set Version II and the diffusion code in R-Z geometry. The S4 calculation was made to evaluate the transport effects. Comparison between the calculated and experimental results reveals that the eigenvalue and the plutonium sample worth in the core are underestimated for the heterogeneous assembly, although they are well represented for the homogeneous assembly. The 238U capture rate is underestimated in the internal blanket relative to the core of the heterogeneous assembly. Further study is needed to solve the inconsistent prediction of the sodium-void worth observed between the heterogeneous and homogeneous assemblies.