ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Takashi Nakamura, Yoshitomo Uwamino, Katsumi Hayashi, Atsushi Torii, Masahiko Ueda and Akito Takahashi
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 281-297
Technical Paper | doi.org/10.13182/NSE85-A17769
Articles are hosted by Taylor and Francis Online.
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with the high-efficiency rem counter, the multisphere spectrometer, and the NE-213 scintillator in the environment surrounding an intense 14-MeV neutron source facility. The dose distribution and the energy spectra of neutrons around the facility used as a skyshine source have also been measured to enable the absolute evaluation of the skyshine effect. The skyshine effect was analyzed by two multigroup Monte Carlo codes, NIMSAC and MMCR-2, by two discrete ordinates Sn codes, ANISN and DOT3.5, and by the shield structure design code for skyshine, SKYSHINE-II. The calculated results show good agreement with the measured results in absolute values. These experimental results should be useful as benchmark data for shyshine analysis and for shielding design of fusion facilities.