ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
H. W. Lewis, S. Seth
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 318-320
Technical Note | doi.org/10.13182/NSE86-A17761
Articles are hosted by Taylor and Francis Online.
For those nuclear power plants for which a seismic probabilistic risk assessment has been conducted, it is possible to infer a prediction for the recurrence rate of the safe shutdown earthquake, and then to compare it with the historic seismicity at the site. Using the Bayesian algorithm, it is then possible to update the prediction in such a way as to quantify the degree of conservatism. By using a sample of eight plants, and other assumptions that are reasonable but by no means unique, the conservatism is estimated to be a factor of the order of 2 or 3. The uncertainty is also reduced, though there are caveats on this point. This suggests that earthquakes are somewhat overrated as sources of risk for nuclear power plants.