ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Anil Kumar, Mahadeva Srinivasan
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 240-247
Technical Paper | doi.org/10.13182/NSE86-A17753
Articles are hosted by Taylor and Francis Online.
A new equation, called the neutron multiplicity equation (NME), has been derived starting from basic physics principles. Neutron multiplicity υ is defined as the integral number of neutrons leaking from a neutron multiplying system for a source neutron introduced into it. Probability distribution of neutron multiplicities (PDNMs) gives the probability of leakage of neutrons as a function of their multiplicity v. The PDNM is directly measurable through statistical correlation techniques. In a specific application, the NME has been solved for PDNM as a function of v for 9Be spheres of varying radii and driven by a centrally located 14-MeV deuterium-tritium neutron source. The potential of NME for sensitivity analysis is demonstrated through a particular modification of secondary neutron transfer cross sections of 9Be. It turns out that PDNM is very sensitive, even as the “average” neutron leakage is practically insensitive to it.