ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. Kaizerman, E. Wacholder, E. Elias
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 168-173
Technical Note | doi.org/10.13182/NSE83-A17725
Articles are hosted by Taylor and Francis Online.
An exact analytical solution of the characteristic equation of homogeneous nonequilibrium two-phase (gas-liquid) flow using the drift-flux model and an approximate, highly accurate, analytical solution of the characteristic equation of inhomogeneous nonequilibrium two-phase flows for practically all flow patterns are presented. Based on the nature of the eigenvalues, in analogy with single-phase flow and previous work in two-phase flows, the homogeneous and inhomogeneous nonequilibrium sound speeds have been defined. The resulting expressions for the sound speed are studied in a wide range of steam/water system parameters of interest such as pressure, degree of thermal nonequilibrium, and void fraction, from which conclusions concerning their general behavior are drawn. Good agreement is obtained between theoretical predictions of the sound speeds and various experimental data.