ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
P. Jacob, H. G. Paretzke, J. Wölfel
Nuclear Science and Engineering | Volume 87 | Number 2 | June 1984 | Pages 113-122
Technical Paper | doi.org/10.13182/NSE84-A17706
Articles are hosted by Taylor and Francis Online.
The photon fluence due to isotropic photon point sources in air has been calculated with a Monte Carlo code that accounts for photon absorption, Compton scattering, annihilation, and bremsstrahlung. Kerma buildup factors have been determined for ten energies in the 0.05- to 10-MeV range and for 72 distances in the 0.15- to 10-mfp range. The results agree with the moments calculations of Chilton, Eisenhauer, and Simmons within 5%, except for low energies and great penetration depths, where the buildup factors differ by more than 20%. This deviation may be due to the use of different cross-section data. The buildup factors have been analytically approximated by a polynomial in E−1 and µr with an accuracy of better than 5% for all 720 data points.