ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Y. Harima, S. Tanaka
Nuclear Science and Engineering | Volume 90 | Number 2 | June 1985 | Pages 165-173
Technical Paper | doi.org/10.13182/NSE85-A17674
Articles are hosted by Taylor and Francis Online.
Exposure buildup factors for plane isotropic, point isotropic, and plane normal sources have been calculated using a discrete ordinates direct integration code, PALLAS-PL, SP-Br, in infinite and finite water shields in the 0.06- to 0.1-MeV range. The values of the attenuation kernel, Be-µr, are greater than unity at distances up to a few mean-free-paths in an infinite medium. The maximum value of Be-µr depends on the incident energy, and this effect reaches a maximum for a 0.08-MeV source. The implication that the dose rate with a shield is greater than without a shield should be noticed. Results of this study show, however, that the large degree of scattering in a low-z material, such as water, produces this effect. Buildup factors, energy spectra, and angular distributions were analyzed for three source geometries in the comparisons of scattered gamma-ray transport in infinite and finite water shields.