ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y. Harima, S. Tanaka
Nuclear Science and Engineering | Volume 90 | Number 2 | June 1985 | Pages 165-173
Technical Paper | doi.org/10.13182/NSE85-A17674
Articles are hosted by Taylor and Francis Online.
Exposure buildup factors for plane isotropic, point isotropic, and plane normal sources have been calculated using a discrete ordinates direct integration code, PALLAS-PL, SP-Br, in infinite and finite water shields in the 0.06- to 0.1-MeV range. The values of the attenuation kernel, Be-µr, are greater than unity at distances up to a few mean-free-paths in an infinite medium. The maximum value of Be-µr depends on the incident energy, and this effect reaches a maximum for a 0.08-MeV source. The implication that the dose rate with a shield is greater than without a shield should be noticed. Results of this study show, however, that the large degree of scattering in a low-z material, such as water, produces this effect. Buildup factors, energy spectra, and angular distributions were analyzed for three source geometries in the comparisons of scattered gamma-ray transport in infinite and finite water shields.