ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. T. Jones, J. S. Merritt, A. Okazaki
Nuclear Science and Engineering | Volume 93 | Number 2 | June 1986 | Pages 171-180
Technical Paper | doi.org/10.13182/NSE86-A17666
Articles are hosted by Taylor and Francis Online.
The thermal neutron capture cross section of 232Th has been measured relative to that of 197Au. Foils of gold, thorium metal, and thoria were irradiated together in the NRU reactor thermal column. The 198Au activity was assayed in a 4πγ ionization chamber, which had been previously calibrated with samples of 198Au standardized by the 4π Β-γ coincidence method. Protactinium-233 sources were also standardized by this method. Comparison of these sources with the irradiated thorium, by means of a Ge(Li) spectrometer, enabled the 233Pa activity in the thorium-bearing foils to be determined. Taking the 2200 m/s capture cross section of 197Au to be 98.8 b, that of 232Th is found to be 7.33 ± 0.06 b. The uncertainty is at the 95% confidence level and includes an estimate of the systematic uncertainties.