ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
James R. Sheff, Robert W. Albrecht
Nuclear Science and Engineering | Volume 24 | Number 3 | March 1966 | Pages 246-259
Technical Paper | doi.org/10.13182/NSE66-A17638
Articles are hosted by Taylor and Francis Online.
The theory of space-dependent stochastic fluctuations is developed in sufficient generality that any specialization can be made to a particular reactor model by finding the appropriate Green's function for the mean-neutron-density equation of the system in question. The approach used is the Langevin technique which, as developed here, yields the cross-correlation function as a double convolution over two Green's functions and the correlation function of equivalent “noise sources” present within the system. The character of these noise sources is examined in considerable detail to gain the basic physical understanding necessary to arrive at a calculational procedure and specific formulae. It is shown that when delayed-neutron effects are included, the input noise sources are not white. That is, their spectral-density functions are not constant. A clear distinction is made between fluctuations in the neutron density and the fluctuations observed with a detector. The density fluctuations include contributions from a neutron correlated with itself and direct progeny, whereas the mechanism of detection (invariably removing a neutron) eliminates this correlation.