ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. M. R. Williams
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 511-519
Technical Paper | doi.org/10.13182/NSE86-A17616
Articles are hosted by Taylor and Francis Online.
The nonabsorbing thermal-neutron Milne problem is solved for isotropic scattering in the laboratory system. The scattering kernel has been approximated by a two-term degenerate sum and the resulting equations are solved by analytic continuation, together with Wiener-Hopf factorization. The solution so obtained is not explicit in the sense of quadratures, but is in the form of a nonsingular Fredholm equation, which is ideally suited to solution by iteration once certain generalized energy-dependent H-functions have been tabulated. The energy transfer properties of the approximate kernel are discussed, and their effect on the structure of the total flux evaluated. In general, the complete solution consists of an asymptotic part, together with a rethermalization term, which is connected intimately with the energy exchange process, and the integral transient which depends markedly on the variation of the total cross section with energy. It is shown that, when the cross section is constant, the rethermalization term becomes zero and the solution reverts to the one-velocity one, multiplied by a Maxwellian. Certain properties of the energy-dependent H-functions are discussed in the Appendix.