ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Keisuke Kobayashi and Tsuyoshi Misawa
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 407-420
Technical Paper | doi.org/10.13182/NSE86-A17529
Articles are hosted by Taylor and Francis Online.
It is shown that the semi-discrete ordinates equation can be used to create a computer program for a general order of PL approximations for solving the multigroup neutron transport equation in two-dimensional x-y geometry. Sample calculations for problems using up to a P7 approximation and up to four energy groups are given, and the results are compared with corresponding ones obtained by the discrete ordinates method. As the order of approximations increases, both results show good agreement, when the influence of the ray effect is not appreciable. The advantage of the present method is that the ray effect does not occur, which is the problem in the discrete ordinates method.