ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
T. E. Dudley, P. B. Daitch
Nuclear Science and Engineering | Volume 25 | Number 1 | May 1966 | Pages 75-84
Technical Paper | doi.org/10.13182/NSE66-A17503
Articles are hosted by Taylor and Francis Online.
The monoenergetic transport equation is solved in the P3 approximation for a cylindrical rod in a square cell. Reflecting boundary conditions applied on the boundary of the cell represent exactly the geometry of cylindrical rods in an infinite square-lattice array. By comparison with Monte Carlo calculations, the P3 calculations appear to approach the exact transport solution at about the same rate in two dimensions as in one dimension. For the cases investigated, the scalar flux in the central absorbing rod is rather independent of the angular position. This appears to be the reason for the success of the Wigner-Seitz equivalent cylindrical cell, with various outer boundary conditions, in predicting flux disadvantage factors. Flux traverses in the square cell and in the Wigner-Seitz equivalent cylindrical cell are also illustrated.