ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
R. R. Lee, P. B. Daitch
Nuclear Science and Engineering | Volume 28 | Number 2 | May 1967 | Pages 247-258
Technical Paper | doi.org/10.13182/NSE67-A17475
Articles are hosted by Taylor and Francis Online.
An eigenvalue-eigenfunction analysis of beryllium assemblies over a large buckling range has been performed in a discrete energy representation. Transverse harmonics and the treatment of the energy dependence of the transverse buckling are shown not to change the conclusions. The decay in small assemblies that do not have an asymptotic (discrete) eigenvalue is seen to be dominated by a highly excited region of the continuous eigenvalue spectrum. This is characterized as a pseudo-fundamental eigenvalue-eigenfunction and is seen to be responsible for the observation of experimental decay constants that are greater than the minimum interaction rate. The pseudo-fundamental eigenfunction is peaked at the Bragg energies and describes a trapping of neutrons at these energies for the intermediate times accessible to experiment. It is doubtful that the theoretical long-time buildup of near-zero-energy neutrons, seen as a peak at the lowest energy mesh point for the lowest “continuum” eigenfunction can be observed by experiment. Spatial effects are examined by comparing Marshak and zero-flux boundary-condition results. The Marshak boundary condition gives, for example, a 3% increase in the decay constant and a higher peak in the spectrum at the major Bragg energy for B2 = 0.0753 cm−2. A surface spectrum predicted by diffusion theory is seen to be in qualitative agreement with experiment. The P3 pseudofundamental eigenvalue is nearly identical to the diffusion theory result, lending support to the assumption that transport effects are not dominant for the times, energies, and assembly sizes considered here. Spectra at energies below the Bragg cutoff are very sensitive to the transport approximation used, but these energies are outside the experimental range and have a negligible effect on integral parameters, such as the decay constant. The major features of the theory are checked against experiment.