ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Z. W. Bell, J. K. Dickens, D. C. Larson, J. H. Todd
Nuclear Science and Engineering | Volume 84 | Number 1 | May 1983 | Pages 12-32
Technical Paper | doi.org/10.13182/NSE83-A17454
Articles are hosted by Taylor and Francis Online.
Interactions of neutrons with the iron isotope 57Fe have been studied by measuring gamma-ray production cross sections for incident neutron energies between 0.16 and 21 MeV. Neutrons produced by the Oak Ridge Electron Linear Accelerator impinged on a metallic iron sample enriched to 93% in the isotope 57Fe. The resulting gamma radiation was detected using a 100-cm3 Ge(Li) detector placed at 125 deg with respect to the neutron beam line. A complete description of the experiment is given. Absolute gamma-ray production cross sections were measured for gamma rays corresponding to the 57Fe(n,n′ γ)57Fe, 57Fe(n,γ)58Fe, 57Fe(n,α)54Cr, 57Fe(n,2n)56Fe, and 57Fe(n,p)57Mn reactions. The cross section for the 57Fe(n,2n)56Fe reaction exceeds 1 b for En ∼ 15 MeV, and the cross section for the 57Fe(n,p)57Mn reaction exceeds 0.2 b for En ∼ 9 MeV. A new excited state is postulated for 57Mn to account for observed data. Several new transitions are reported for decay of levels in 57Fe. Measured cross sections are compared with data obtained from the current ENDF/B evaluation.