ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. I. Bhuiyan, R. W. Roussin, J. L. Lucius, J. H. Marable, D. E. Bartine
Nuclear Science and Engineering | Volume 87 | Number 1 | May 1984 | Pages 96-102
Technical Note | doi.org/10.13182/NSE84-A17450
Articles are hosted by Taylor and Francis Online.
Attempts to devise techniques for rapidly calculating radiation transport in relatively simple shields has led to the development of two calculational models that are based on the use of cross-section sensitivity coefficients and are possible improvements over the traditional linear model. The two models, one an exponential model and the other a power model, were tested, along with the linear model, by applying them to 1- and 2-m-thick concrete slab problems in which the water content, reinforcing steel content, and composition of the concrete were varied. Comparing the results obtained with the three models with those obtained from an exact one-dimensional discrete ordinates transport calculation indicated that the exponential model, named the “BEST model” (for basic exponential shielding trend), is a particularly promising predictive tool for shielding problems dominated by exponential attenuation. When applied to a deep penetration sodium problem, the BEST model also yielded better results than did calculations based on second-order sensitivity theory.