ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Yung-An Chao, Anthony Attard
Nuclear Science and Engineering | Volume 90 | Number 1 | May 1985 | Pages 40-46
Technical Paper | doi.org/10.13182/NSE85-A17429
Articles are hosted by Taylor and Francis Online.
The stiffness problem in reactor kinetics is overcome by the stiffness confinement method for solving the kinetic equations. The idea is based on the observation that the stiffness characteristic is present only in the time response of the prompt neutron density, but not in that of the delayed neutron precursors. The method is, therefore, devised to have the stiffness decoupled from the differential equations for precursors and confined to the one for the prompt neutrons, which can be analytically solved. Numerical examples of applying the method to a variety of problems confirm that the time step increment size can be greatly increased and that much computing time can be saved, as compared to other conventional methods. The theory is of general validity and involves no approximation other than the discretization of the time variable.