ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
R. E. Dahl, H. H. Yoshikawa
Nuclear Science and Engineering | Volume 17 | Number 3 | November 1963 | Pages 398-403
Technical Paper | doi.org/10.13182/NSE63-A17388
Articles are hosted by Taylor and Francis Online.
Fast-neutron spectra have been computed using three different codes: GNU-II, HFN, GEHAPO-S-X. Significant differences in spectra are seen as one uses codes with varying degrees of refinement. GE-HAPO-S-X was chosen for calculating cross section values and testing damage models because of its greater accuracy and wider applicability. The calculations illustrate spectral differences existing at different points in a reactor lattice. The spectra are used to compute relative activation for such fast-neutron flux monitor materials as Ni58, Fe54, Am243 and to calculate gross vacancy production using widely varying damage models. From the results it is concluded that calculation of spectra in irradiation facilities is necessary for the proper reduction of monitor activities to neutron exposures and for correlation of observed radiation effects in materials irradiated in dissimilar facilities.