ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. A. Reardon, D. E. Christensen
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 222-232
Technical Paper | doi.org/10.13182/NSE67-A17333
Articles are hosted by Taylor and Francis Online.
The graded exposure of 4 plutonium-aluminum alloy, 19-rod clustered fuel elements, and the subsequent destructive sampling of the elements have provided experimental data showing the variation of plutonium isotopes with irradiation. Irradiations were conducted in the heavy-water-moderated and -cooled Plutonium Recycle Test Reactor at Pacific Northwest Laboratory of the Battelle Memorial Institute. Using 137Cs as a fission indicator, the depletion of the initial plutonium to 50.4 ± 1.1% is determined. Reactor effective cross-section ratios for the plutonium isotopes are derived from the data, and results show that the capture-to-fission cross-section ratio for 239Pu (239) is 0.426 ± 0.019.