ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Richard W. Benjamin, John A. Harvey, Nathaniel W. Hill, Madhu S. Pandey, Robert F. Carlton
Nuclear Science and Engineering | Volume 85 | Number 3 | November 1983 | Pages 261-270
Technical Paper | doi.org/10.13182/NSE83-A17318
Articles are hosted by Taylor and Francis Online.
The neutron total cross sections of 249Bk and 249Cf have been measured from 0.03 to 100 eV using the Oak Ridge Electron Linear Accelerator as a source of pulsed neutrons. The 1.6-mm-diam cylindrical transmission samples initially contained up to 5.3 mg of 98% 249Bk and 2% 249Cf; 4.5 yr later, when the final measurements were made, the composition of the samples had become 2.5% 249Bk, 96.9% 249Cf and 0.6% 245Cm. Samples were cooled with liquid nitrogen to reduce Doppler broadening. Thirty-nine resonances were identified in 249Bk and analyzed using a single-level Breit-Wigner formalism. Fifty-five resonances were identified in 249Cf and analyzed using an R-matrix multilevel formalism. The resonance parameters obtained have been used to determine the average level spacings and the s-wave neutron and fission strength functions. Where possible, bound-level parameters were derived to fit the thermal neutron total cross-section data.