ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
J. B. Yasinsky
Nuclear Science and Engineering | Volume 29 | Number 3 | September 1967 | Pages 381-391
Technical Paper | doi.org/10.13182/NSE67-A17285
Articles are hosted by Taylor and Francis Online.
A variational principle, which has as its stationary conditions the direct and adjoint time-dependent group diffusion equations, is modified to admit time-discontinuous approximating functions. This extended principle is used to develop a synthesis approximation for the time-dependent group diffusion equations which permits the use of different sets of trial functions at different times during a transient analysis. The necessary equations are derived in detail, and two numerical examples are presented. These examples show that the time-discontinuous synthesis method is capable of constructing accurate space-time neutron fluxes, which vary smoothly in time, from spatial trial functions which are discontinuous in time. In addition, these examples display the potential of the new time synthesis for yielding computationally less expensive solutions than are possible with the time-continuous synthesis procedure.