ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
J. B. Yasinsky
Nuclear Science and Engineering | Volume 29 | Number 3 | September 1967 | Pages 381-391
Technical Paper | doi.org/10.13182/NSE67-A17285
Articles are hosted by Taylor and Francis Online.
A variational principle, which has as its stationary conditions the direct and adjoint time-dependent group diffusion equations, is modified to admit time-discontinuous approximating functions. This extended principle is used to develop a synthesis approximation for the time-dependent group diffusion equations which permits the use of different sets of trial functions at different times during a transient analysis. The necessary equations are derived in detail, and two numerical examples are presented. These examples show that the time-discontinuous synthesis method is capable of constructing accurate space-time neutron fluxes, which vary smoothly in time, from spatial trial functions which are discontinuous in time. In addition, these examples display the potential of the new time synthesis for yielding computationally less expensive solutions than are possible with the time-continuous synthesis procedure.