ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. Tomlinson, R. R. Tymko, Donna Wuschke
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 14-19
Technical Paper | doi.org/10.13182/NSE67-A17238
Articles are hosted by Taylor and Francis Online.
The hydrogenated terphenyl mixture HB-40 which is in use as a reactor organic coolant, has been irradiated at 350°C with 1.5-MeV electrons. Changes in composition and properties are reported. Decomposition proceeded at half the rate per unit dose observed previously during reactor irradiations where 62% of the absorbed energy was due to fast neutrons. This indicates a dependence of hydroterphenyl radiolysis on Linear Energy Transfer, whereby recoil protons produce 3.2 ± 0.6 times as much decomposition as electrons. Some differences between the physical properties of electron-irradiated material and the properties of reactor-irradiated material were noted.