ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. B. Perez, R. E. Uhrig
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 90-100
Technical Paper | doi.org/10.13182/NSE63-A17214
Articles are hosted by Taylor and Francis Online.
Use of a sinusoidally modulated source of neutrons is equivalent to “poisoning” a moderating medium with a 1/v poison. The inverse relaxation length of the neutron wave amplitude and the variation of the phase angle as a function of position are dependent upon the frequency of modulation and the neutron diffusion and thermalization parameters of the media in which the waves are being propagated. The neutron wave technique allows “poisoning” of solid moderators and provides a means of performing poisoning experiments for measuring nuclear properties of solid as well as liquid moderators. It should supplement the recent use of poisoning techniques in an attempt to reconcile discrepancy in the diffusion and thermalization parameters of moderators, as measured by pulsed neutron techniques. The neutron wave technique and the pulsed neutron technique are supplementary from an experimental viewpoint.