ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
G. G. Gaul, W. L. Pearl
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 30-41
Technical Paper | doi.org/10.13182/NSE63-A17207
Articles are hosted by Taylor and Francis Online.
Type 304 stainless steel cladding material has been corrosion tested under heat transfer conditions at metal temperatures up to 1300°F in specially constructed out-of-pile superheat facilities. The hydrogen and oxygen contents of the steam have been controlled to simulate that found in boiling water reactor type systems. Good corrosion resistance and low metal release to system up to metal temperatures of 1100°F were experienced with an expected pattern of an initially high corrosion rate that decreased to a lower constant rate with time up to 4500 hr. A compositionally disturbed layer developed adjacent to the scale in the 1100°F to 1300°F metal temperature range on the heat transfer specimens. The layer continued to grow with time but had little effect on the corrosion rate within the 2500 hours of testing.