ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
G. C. Pomraning, M. Clark, Jr.
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 8-17
Technical Paper | doi.org/10.13182/NSE63-A17205
Articles are hosted by Taylor and Francis Online.
The angular dependence of the solution of the monoenergetic Boltzmann equation in slab geometry with isotropic scattering is expanded classically in the set of Jacobi polynomials which are orthogonal in the interval −1 to +1 with respect to the weight function w(μ) = (1 − μ)α (1 + μ)β. The low order solution obtained by retaining only the first two terms in the expansion is investigated in detail. In this low order it is shown that a proper choice of α and β leads to the exact asymptotic transport eigenvalue. With this choice of α and β a significant improvement in the linear extrapolation distance and the critical size of a bare slab over the usual (P − 1) diffusion theory is obtained. However, it is shown that, in general, the truncated set of classical Jacobi equations does not conserve neutrons. A modification in the truncation procedure is made in order to obtain neutron conservation while retaining the advantages of the Jacobi expansion. The choices α = β = -½ and α = β = −1 are discussed in some detail and shown to have advantages over the corresponding Legendre (α = β = 0) expansion.