ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Hans K. Fauske
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 1-7
Technical Paper | doi.org/10.13182/NSE63-A17204
Articles are hosted by Taylor and Francis Online.
Critical two-phase, steam - water flows have been measured in horizontal test sections with pipe diameters of 0.125 and 0.269 in. internal diameter (i.d.) over a range of qualities from 0.01 to 0.7, mass velocities from 500 to 4200 lb/sec-ft2, and critical pressures from 40 to 360 lb /in.2 absolute. The critical flow data and a theory for the critical flow phenomena have been discussed (1, 2). In this paper an analysis for the pressure drop data in the approach region to critical flow is presented. The flow mixture accelerates to critical flow at the end of the test sections, and thus the pressure drop data are for flow regimes in which both momentum and frictional losses are important. By utilizing the model developed for estimating critical discharge rates (1), two-phase friction factors were calculated from the experimental data. The friction factors obtained correlated well in terms of the two-phase quality and appear to be independent of flow rate, static pressure, and test geometry for the conditions examined.