ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
J. M. Davidson, L. O. Gates, and R. E. Nightingale
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 90-98
Technical Paper | doi.org/10.13182/NSE66-A17191
Articles are hosted by Taylor and Francis Online.
Radiation effects were determined in samples of borated graphite used as a neutron shield in the Enrico Fermi Power Plant. The material nominally contained 5 or 7 wt% boron as boron-carbide particles in a nuclear-graphite matrix. The graphite from the center of the graphitizing furnace had a shiny, grey appearance. Microscopy studies showed that the boron carbide had melted and the graphite particles were recrystallized. The remaining material had the usual dull black appearance of nuclear graphite., Most irradiation tests were conducted at 370 and 500°C to a total thermal-neutron dose of 2.5 × 1021 n/cm2 in a predominantly thermal-neutron spectrum. Dimensional changes and other radiation effects were much larger than those in nonborated materials. One grey sample expanded 3.3%, but dimensional changes and other property changes in the black materials were generally less., The radiation effects have been attributed primarily to carbon-atom displacements caused by the energetic lithium and helium atoms in the 10B(n,α)7Li reaction. The faster rate of damage in the grey material is believed to have been due to the finer dispersion of boron in the matrix. This finer dispersion would allow more of the helium and lithium atoms to escape from the boron-carbide particles and produce carbon-atom displacements., Preliminary tests in a neutron spectrum, where the ratio of thermal-to-fast neutrons was less than 1% of that in the flux utilized in the above experiments, produced much smaller changes for comparable fast-neutron doses. This is further evidence that most damage is caused by thermal neutrons.