ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
J. M. Davidson, L. O. Gates, and R. E. Nightingale
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 90-98
Technical Paper | doi.org/10.13182/NSE66-A17191
Articles are hosted by Taylor and Francis Online.
Radiation effects were determined in samples of borated graphite used as a neutron shield in the Enrico Fermi Power Plant. The material nominally contained 5 or 7 wt% boron as boron-carbide particles in a nuclear-graphite matrix. The graphite from the center of the graphitizing furnace had a shiny, grey appearance. Microscopy studies showed that the boron carbide had melted and the graphite particles were recrystallized. The remaining material had the usual dull black appearance of nuclear graphite., Most irradiation tests were conducted at 370 and 500°C to a total thermal-neutron dose of 2.5 × 1021 n/cm2 in a predominantly thermal-neutron spectrum. Dimensional changes and other radiation effects were much larger than those in nonborated materials. One grey sample expanded 3.3%, but dimensional changes and other property changes in the black materials were generally less., The radiation effects have been attributed primarily to carbon-atom displacements caused by the energetic lithium and helium atoms in the 10B(n,α)7Li reaction. The faster rate of damage in the grey material is believed to have been due to the finer dispersion of boron in the matrix. This finer dispersion would allow more of the helium and lithium atoms to escape from the boron-carbide particles and produce carbon-atom displacements., Preliminary tests in a neutron spectrum, where the ratio of thermal-to-fast neutrons was less than 1% of that in the flux utilized in the above experiments, produced much smaller changes for comparable fast-neutron doses. This is further evidence that most damage is caused by thermal neutrons.