ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Toshio Sanda, Kazuo Azekura
Nuclear Science and Engineering | Volume 85 | Number 1 | September 1983 | Pages 70-79
Technical Note | doi.org/10.13182/NSE83-A17154
Articles are hosted by Taylor and Francis Online.
A model for calculating the power distribution and the control rod worth in fast reactors has been developed. This model is based on the influence function method. The characteristics of the model are as follows: 1. Influence functions for any changes in the control rod insertion ratio are expressed by using an influence function for an appropriate control rod insertion in order to reduce the computer memory size required for the method. 2. A control rod worth is calculated on the basis of a one-group approximation in which cross sections are generated by bilinear (flux-adjoint) weighting, not the usual flux weighting, in order to reduce the collapse error. 3. An effective neutron multiplication factor is calculated by adjoint weighting in order to reduce the effect of the error in the one-group flux distribution. The results obtained in numerical examinations of a prototype fast reactor indicate that this method is suitable for on-line core performance evaluation because of a short computing time and a small memory size.