ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William A. Zanotelli, Stephen M. Craven, Garry D. Miller, William E. Moddeman, Frank Novak, David M. Hercules
Nuclear Science and Engineering | Volume 85 | Number 1 | September 1983 | Pages 17-25
Technical Paper | doi.org/10.13182/NSE83-A17147
Articles are hosted by Taylor and Francis Online.
The conditions inside the bubble formed in a hypothetical core disruptive accident (HCDA) of a liquid-metal fast breeder reactor have been simulated with a LAMMA 500 laser microprobe mass analyzer. Results for Na2U2O7 show that negative diuranate and positive sodium uranate ions are produced. Higher laser powers favor greater fragmentation to U+, [UO]+, and [UO2]+. The Na2O/UO2 results indicate vapor phase reactions result in the formation of positive and negative sodium uranate ion intermediates. Positive hydrogen ions are observed in some spectra. Higher laser energies (higher HCDA temperatures) favor sodium uranate ion formation. These data support the view that sodium uranate ionic precursors are formed in the vapor phase, bubble, of a simulated HCDA reaction. A prior argon-ion-excited secondary ion mass spectroscopy investigation of Na2O/UO2 and Na2U2O7 showed no sodium uranate species, only the formation of U+, [UO]+, and [UO2]+.