ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
William A. Zanotelli, Stephen M. Craven, Garry D. Miller, William E. Moddeman, Frank Novak, David M. Hercules
Nuclear Science and Engineering | Volume 85 | Number 1 | September 1983 | Pages 17-25
Technical Paper | doi.org/10.13182/NSE83-A17147
Articles are hosted by Taylor and Francis Online.
The conditions inside the bubble formed in a hypothetical core disruptive accident (HCDA) of a liquid-metal fast breeder reactor have been simulated with a LAMMA 500 laser microprobe mass analyzer. Results for Na2U2O7 show that negative diuranate and positive sodium uranate ions are produced. Higher laser powers favor greater fragmentation to U+, [UO]+, and [UO2]+. The Na2O/UO2 results indicate vapor phase reactions result in the formation of positive and negative sodium uranate ion intermediates. Positive hydrogen ions are observed in some spectra. Higher laser energies (higher HCDA temperatures) favor sodium uranate ion formation. These data support the view that sodium uranate ionic precursors are formed in the vapor phase, bubble, of a simulated HCDA reaction. A prior argon-ion-excited secondary ion mass spectroscopy investigation of Na2O/UO2 and Na2U2O7 showed no sodium uranate species, only the formation of U+, [UO]+, and [UO2]+.