ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
L. Meskó, R. Kozma
Nuclear Science and Engineering | Volume 88 | Number 1 | September 1984 | Pages 88-93
Technical Note | doi.org/10.13182/NSE84-A17142
Articles are hosted by Taylor and Francis Online.
Using the Markovian description of stochastic processes, the fluctuations in pressurized water reactor cores (for example, temperature and bubble population fluctuations) are modeled. The model includes one-dimensional space and time dependence. Fluctuations are described with the help of a single stochastic variable N(z, t). Generally this approach is not satisfactory in practical problems, but in this way spatial effects can be investigated by a simple model. For this case, connections between moments of N(z, t) are derived. These moments are calculated both for transient and steady-state processes. Introducing spectral density functions in frequency and wave-number domains, a condition is given for the validity of the point model approach.