ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
J. F. Carew, P. Neogy
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 117-122
Technical Note | doi.org/10.13182/NSE85-A17134
Articles are hosted by Taylor and Francis Online.
An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a pressurized water reactor rod ejection accident. In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross-section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first-order modal excitation strength is determined by the spatial overlap between the initial and final flux states and the cross-section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations.