ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Takanobu Kamei, Tadashi Yoshida, Toshikazu Takeda, Takuya Umano
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 11-33
Technical Paper | doi.org/10.13182/NSE85-A17126
Articles are hosted by Taylor and Francis Online.
The prediction accuracy of the burnup characteristics of large liquid-metal fast breeder reactors (LMFBRs) is very hard to evaluate because of the unavailability of the direct experimental information. A quantitative evaluation was performed on the accuracy of the burnup property by use of the sensitivity coefficients in a large LMFBR and the covariance matrix of nuclear data. Also evaluated was the decrease in prediction error when the cross-section set was adjusted by the use of experimental data, such as criticality, reaction rate ratios, and others. It was concluded that accuracy with the direct use of current nuclear data is ±30% for burnup reactivity loss and ±5% for breeding ratio. On the other hand, the accuracy would be improved to ±18% and ±2.5% by utilizing the experimental data obtained on the zero-power plutonium reactor assembly.