ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Urenco USA marks enrichment milestones
Urenco USA has highlighted the completion of a successful year of advancing nuclear fuel supply in the U.S. by achieving two new milestones this month: The first production of enriched uranium above 5 percent uranium-235, and the startup of the company’s next cascade of centrifuges as part of its capacity installation program.
Wei Shen, Dimitar Altiparmakov
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 109-134
Technical Paper | doi.org/10.13182/NSE12-42
Articles are hosted by Taylor and Francis Online.
This paper presents a multicell correction method that has been developed and implemented in the code suite WIMS-AECL/RFSP to capture the effects of the lattice-cell neighborhood while maintaining the basic structure of the single-cell-based reactor-physics methodology traditionally used for Canada Deuterium Uranium (CANDU)-reactor calculations for decades. To validate the effectiveness in treating the core-reflector interface heterogeneity as well as the checkerboard-voiding scenario, the results of WIMS-AECL/RFSP calculations (with and without the multicell correction) are compared with the results of MCNP5 full-core calculations for CANDU-type reactors. The presented results show that the multicell correction method is effective, generic, and capable of capturing the heterogeneity effects of the neighborhood in CANDU-type reactors.