ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Educators learn about Oak Ridge’s nuclear career opportunities
Nearly 300 public school teachers, career counselors, and school administrators from 11 middle and high schools in the Oak Ridge region of Tennessee recently attended a nuclear opportunities workshop. The event was held to provide information about careers available for students in the years ahead related to the cleanup mission of the Department of Energy’s Oak Ridge Office of Environmental Management.
Kaushik Banerjee, William R. Martin
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 30-45
Technical Paper | doi.org/10.13182/NSE11-94
Articles are hosted by Taylor and Francis Online.
Monte Carlo point detector and surface crossing flux tallies are two widely used tallies, but they suffer from an unbounded variance. As a result, the central limit theorem cannot be used for these tallies to estimate confidence intervals. By construction, kernel density estimator (KDE) tallies can be directly used to estimate flux at a point, but the variance of this point estimate does not converge as 1/N, which is not unexpected for a point quantity. However, an improved approach is to modify both point detector and surface crossing flux tallies directly by using KDE within a variance reduction approach and taking advantage of the fact that KDE estimates the underlying probability density function. This methodology is illustrated by several numerical examples and shows numerically that both the surface crossing tally and the point detector tally converge as 1/N (in variance), and both are asymptotically unbiased.