ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Charles N. Kelber, Philip H. Kier
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 389-393
Technical Paper | doi.org/10.13182/NSE66-A16409
Articles are hosted by Taylor and Francis Online.
As suggested by Brissenden, it is possible to analyze the reaction rate in the unresolved resonance region by generating sets of random resonance parameters that have the correct statistical properties. Since each set of parameters is itself a random variable, an estimate of the probable error in an average-group cross section or reaction rate can be made by averaging over many random sets. This we have done for a mixture representative of fast breeder reactors and for the energy range 700 to 900 eV. This region is a typical one for studying the Doppler effect. If we make the assumption (a great oversimplification) that the response in this small energy band is typical, not only for the mean but also for the variance, then we would conclude that, if all fine groups (of width 200 eV) have the same weight, the probable error in the fissile component of the Doppler coefficient is about equal to its mean value. For the fine group itself, the probable error in the difference in the relative changes of the fission and the absorption rates is about ten times the mean value.