ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Charles N. Kelber, Philip H. Kier
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 389-393
Technical Paper | doi.org/10.13182/NSE66-A16409
Articles are hosted by Taylor and Francis Online.
As suggested by Brissenden, it is possible to analyze the reaction rate in the unresolved resonance region by generating sets of random resonance parameters that have the correct statistical properties. Since each set of parameters is itself a random variable, an estimate of the probable error in an average-group cross section or reaction rate can be made by averaging over many random sets. This we have done for a mixture representative of fast breeder reactors and for the energy range 700 to 900 eV. This region is a typical one for studying the Doppler effect. If we make the assumption (a great oversimplification) that the response in this small energy band is typical, not only for the mean but also for the variance, then we would conclude that, if all fine groups (of width 200 eV) have the same weight, the probable error in the fissile component of the Doppler coefficient is about equal to its mean value. For the fine group itself, the probable error in the difference in the relative changes of the fission and the absorption rates is about ten times the mean value.