ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Yoshiko Harima, Hideo Hirayama, Toshio Ishikawa, Yukio Sakamoto, Shun-ich Tanaka
Nuclear Science and Engineering | Volume 96 | Number 3 | July 1987 | Pages 241-252
Technical Note | doi.org/10.13182/NSE87-A16385
Articles are hosted by Taylor and Francis Online.
Exposure and absorbed dose buildup factors for a photon point source in infinite beryllium have been calculated in the low-energy range of 0.03 to 0.3 MeV, for penetration depths up to 40 mfp, using two discrete ordinates codes, PALLAS-PL,SP-Br and ANISN. Comparisons of both result to values obtained by point Monte Carlo calculations using the electron gamma shower version 4 code showed reasonable agreement for two types of sources: normally incident and point isotropic sources. The fitting parameters of a geometric-progression method formula were determined for the resulting buildup factor data. These fitting parameters are in good agreement with the basic data within 5% over a great variation in magnitude.