ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Yoshiko Harima, Hideo Hirayama, Toshio Ishikawa, Yukio Sakamoto, Shun-ich Tanaka
Nuclear Science and Engineering | Volume 96 | Number 3 | July 1987 | Pages 241-252
Technical Note | doi.org/10.13182/NSE87-A16385
Articles are hosted by Taylor and Francis Online.
Exposure and absorbed dose buildup factors for a photon point source in infinite beryllium have been calculated in the low-energy range of 0.03 to 0.3 MeV, for penetration depths up to 40 mfp, using two discrete ordinates codes, PALLAS-PL,SP-Br and ANISN. Comparisons of both result to values obtained by point Monte Carlo calculations using the electron gamma shower version 4 code showed reasonable agreement for two types of sources: normally incident and point isotropic sources. The fitting parameters of a geometric-progression method formula were determined for the resulting buildup factor data. These fitting parameters are in good agreement with the basic data within 5% over a great variation in magnitude.