ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
M. M. R. Williams
Nuclear Science and Engineering | Volume 96 | Number 3 | July 1987 | Pages 234-240
Technical Note | doi.org/10.13182/NSE87-A16384
Articles are hosted by Taylor and Francis Online.
The one-speed transport equation is solved for a ring reactor. A complete solution is obtained for the space-time relaxation of a pulse of neutrons in a multiplying medium in which delayed neutrons are neglected. The solution consists of a fundamental mode, a finite number of harmonics, and an integral transient. A condition is deduced, which gives the maximum number of harmonics that can exist for a given ring circumference. The limitations of diffusion theory are pointed out with particular reference to the shortcomings of that theory in dealing with the early stages of evolution of the pulse. Delayed neutrons are included and a complete solution is obtained by means of the prompt jump approximation. The results are illustrated by numerical calculations designed to show the onset of instabilities in the harmonics when the reactor is sufficiently large.