ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
S. C. Mo, K. O. Ott
Nuclear Science and Engineering | Volume 96 | Number 2 | June 1987 | Pages 112-121
Technical Paper | doi.org/10.13182/NSE87-A16371
Articles are hosted by Taylor and Francis Online.
A practical methodology is developed to treat the resonance self-shielding transition near zone interfaces. Based on the narrow resonance approximation, a space- and energy-dependent selfshielding factor for a single interface system is derived from the integral transport theory. Using the Wigner rational approximation, the self-shielding factor for a fine region near a zone interface isfac-torized into a linear combination of individual homogeneous and heterogeneous self-shielding factors. The method has been implemented in a widely used cross-section processing code that is based on the Bondarenko f-factor method. The result of the analysis was applied to a fast reactor blanket mock-up to improve the calculations near a converter-blanket interface. Comparisons of the calculation with 238U capture experimental data measured in the Purdue Fast Breeder Blanket Facility are also discussed.