ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Tom Burr, Brian Williams, Stephen Croft, Morgan White, Ken Hanson
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 15-27
Technical Paper | doi.org/10.13182/NSE11-112
Articles are hosted by Taylor and Francis Online.
Meta-analysis aims to combine results from multiple experiments. For example, a neutron reaction rate or cross section is typically measured in multiple experiments, and a single estimate and its uncertainty are provided for users of the estimated reaction rate. It is often difficult to combine estimates from multiple laboratories because there can be important differences in experimental protocols among laboratories and because laboratories do not always provide all the information needed to assess the estimate's uncertainty, particularly if total uncertainty (random and systematic) is required. The paper illustrates that explicit measurement error models are essential for understanding measurement processes and for guiding how to combine multiple measurements, whether the measurements are consistent or not. We emphasize that both the consensus estimate and its estimated uncertainty depend on the assumed measurement error model, and we investigate measurement error model selection options for two examples.