ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Tom Burr, Brian Williams, Stephen Croft, Morgan White, Ken Hanson
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 15-27
Technical Paper | doi.org/10.13182/NSE11-112
Articles are hosted by Taylor and Francis Online.
Meta-analysis aims to combine results from multiple experiments. For example, a neutron reaction rate or cross section is typically measured in multiple experiments, and a single estimate and its uncertainty are provided for users of the estimated reaction rate. It is often difficult to combine estimates from multiple laboratories because there can be important differences in experimental protocols among laboratories and because laboratories do not always provide all the information needed to assess the estimate's uncertainty, particularly if total uncertainty (random and systematic) is required. The paper illustrates that explicit measurement error models are essential for understanding measurement processes and for guiding how to combine multiple measurements, whether the measurements are consistent or not. We emphasize that both the consensus estimate and its estimated uncertainty depend on the assumed measurement error model, and we investigate measurement error model selection options for two examples.