ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Alex Galperin, Jean-Michel Evrard
Nuclear Science and Engineering | Volume 107 | Number 2 | February 1991 | Pages 131-141
Technical Paper | doi.org/10.13182/NSE91-A15727
Articles are hosted by Taylor and Francis Online.
Development of a knowledge-based system for supervision of a continuous process requires, on the one hand, efficient and flexible knowledge structuring and, on the other hand, overall system control, which provides coherence between the diagnosis task (deduction) and the prediction task (simulation). The development of a reasoning method that combines qualitative and quantitative analysis approaches is described. This method is integrated into an overall computational system for a knowledge-based supervisor. The prototype was tested by simulating the transient behavior of the auxiliary feedwater system of a pressurized water reactor. The preliminary results indicate the feasibility of the methods and their potential for industrial applications.