ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A. D. Rossin
Nuclear Science and Engineering | Volume 9 | Number 2 | February 1961 | Pages 137-147
doi.org/10.13182/NSE61-A15598
Articles are hosted by Taylor and Francis Online.
The mechanism of interaction between fast neutrons and atoms of a metal lattice is described. A cross section for the production of vacancies in iron by neutrons, as a function of neutron energy, is derived and shown to be roughly proportional to the product of the neutron energy and the isotropic elastic scattering cross section. The vacancy production cross section is applied to several reactor spectra and the results show that an appreciable fraction of the radiation damage in crystalline solids, particularly metals, can be caused by neutrons having energies below 1 Mev. Also the assumption that the neutrons responsible for radiation damage have a fission spectrum distribution appears to be inapplicable in reactor situations. In fact, no quantitative measure of total neutron exposure can be made without knowledge of the spectral shape. Steel is chosen as an example because of the interest in its properties as a function of irradiation, hence the model is developed based on interaction of neutrons with iron atoms. Some important limitations of the method are cited.