ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
G. Dharmadurai
Nuclear Science and Engineering | Volume 84 | Number 4 | August 1983 | Pages 345-349
Technical Paper | doi.org/10.13182/NSE83-A15455
Articles are hosted by Taylor and Francis Online.
A simple acoustic mismatch model can predict heat flow across solid/fluid interfaces at high temperatures in terms of known physical properties of the system. Using this model, the thermal boundary conductances of the various interfaces involved in heat transfer from the fuel pellet to the cladding of fast reactor fuel rods are estimated. The typical values of fuel-cladding gap conductance of helium-bonded fast reactor fuel rods quoted in the literature are in reasonable agreement with estimates obtained from this model. In addition to its striking simplicity, an interesting and novel feature of this fundamental approach is the prediction of a marginally high gap conductance for a helium-bonded oxide fuel rod over its carbide counterpart.